公式(7.8) w检验
公式(7.9) 偏度系数
公式(7.10)
公式(7.11) 峰度系数
公式(7.12)
公式 (7.13) g1的抽样误差
公式 (7.14) g2的抽样误差
公式 (7.15) g1的u检验u1=g1/Sg1
公式 (7.16) g2的u检验 u2=g2/Sg2
两方差齐性检验
公式(7.17)F=S12/S22,S1>S2
方差分析
公式(8.1) 总离均差平方和
公式(8.2) 组间离均差平方和
公式(8.3) 组内离均差平方和
公式(8.4) 总变异自由度 ν总=N-1
公式(8.5)组间变异自由度 ν组间=k-1
公式(8.6) 组内变异自由度 ν组内=N-k
公式(8.7) F检验F=组间均方/组内均方
多个均数间两两比较
公式(8.8) 最小显著相差Dα=t,νSA-B
公式(8.9) 两均数的标准误
公式(8.10) 平均例数i=1,2,…,k
公式(8.11) 标准误
多个方差齐性检验
公式(8.12)
公式(8.13)
直线相关
公式(9.1) 直线相关系数
公式(9.2) 离均差积和
公式(9.3) 相关系数t检验
直线回归
公式(9.4) 直线回归方程γ=a+bx
公式(9.5) 回归系数
用统计学软件SAS A8来计算,什么都能算出来
统计学意义(p值)ZT
结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率。如p=0.05提示样本中变量关联有5%的可能是由于偶然性造成的。即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。)在许多研究领域,0.05的p值通常被认为是可接受错误的边界水平。
在最后结论中判断什么样的显著性水平具有统计学意义,不可避免地带有武断性。换句话说,认为结果无效而被拒绝接受的水平的选择具有武断性。实践中,最后的决定通常依赖于数据集比较和分析过程中结果是先验性还是仅仅为均数之间的两两>比较,依赖于总体数据集里结论一致的支持性证据的数量,依赖于以往该研究领域的惯例。通常,许多的科学领域中产生p值的结果≤0.05被认为是统计学意义的边界线,但是这显著性水平还包含了相当高的犯错可能性。结果0.05≥p>0.01被认为是具有统计学意义,而0.01≥p≥0.001被认为具有高度统计学意义。但要注意这种分类仅仅是研究基础上非正规的判断常规。
所有的检验统计都是正态分布的吗并不完全如此,但大多数检验都直接或间接与之有关,可以从正态分布中推导出来,如t检验、f检验或卡方检验。这些检验一般都要求:所分析变量在总体中呈正态分布,即满足所谓的正态假设。许多观察变量的确是呈正态分布的,这也是正态分布是现实世界的基本特征的原因。当人们用在正态分布基础上建立的检验分析非正态分布变量的数据时问题就产生了,(参阅非参数和方差分析的正态性检验)。这种条件下有两种方法:一是用替代的非参数检验(即无分布性检验),但这种方法不方便,因为从它所提供的结论形式看,这种方法统计效率低下、不灵活。另一种方法是:当确定样本量足够大的情况下,通常还是可以使用基于正态分布前提下的检验。后一种方法是基于一个相当重要的原则产生的,该原则对正态方程基础上的总体检验有极其重要的作用。即,随着样本量的增加,样本分布形状趋于正态,即使所研究的变量分布并不呈正态。
1.绪论(医学统计学的定义与研究对象、在科研中的作用、主要内容)
2.统计资料类型与常用统计指标
3.统计图表
4.概论分布与抽样误差
5.常用统计方法(相对数与x2检验、平均数与变异指标、正态分布、t分布、正常值范围、可信区间、t检验与u检验、方差分析、非参数统计、相关回归、曲线拟合、多元回归等)
6.实验设计(临床试验设计、调查设计)基本方法
7.多元分析方法应用举例(逐步回归、判别分析、聚类分析、主成分分析等)
8.SPLM计算机统计软件的调用与结果分析
授课方式、方法:
授课(66学时)、课堂讨论(13学时)、阶段复习(4学时)、计算机实习(4学时)、考试(3学时)、作业(课余时间)
考试方法:闭卷考试
教材名称:
1.医学统计学,郭祖超主编,人民军医出版社,1999年
2.SPLM使用指南,教研室自编,1996年
主要参考书目:
1.医用数理统计方法(第三版),郭祖超主编,人民卫生出版社,1988年
2.中国医学百科全书 · 医学统计学,杨树勤主编,上海科学技术出版社,1985年
3.医用统计方法,金丕焕主编,上海医科大学出版社,1993年
4.医学统计学与电脑实验,方积乾主编,上海科学技术出版社,1997年
预修课程:医学院校基础课程
附:《医学统计学》教学要点
教学目的和意义:
讲授医学统计学基本原理,医学数据的常用统计描述和统计推断方法。要求学员掌握基本的统计计算公式和应用条件,了解医学实验设计的基本原则和计算机统计软件的调用,能独立处理常见的医学试验数据。经过学习,使学员能够在医学科研的设计、数据收集和结果分析的各个阶段正确运用统计学的原理和方法,提高研究效率和科学性。
教学内容和重点:
医学统计学的基本概念和统计图表、假设检验方法、实验设计与方差分析、计算机统计软件的调用。
教学时数分配和学分:
绪论、统计指标和统计图表(4学时)、x2检验和t(u)检验(14学时)、方差分析(10学时)、相关回归与曲线拟合(14学时)、统计软件介绍(4学时)、多元回归与逐步回归(13学时)、实验设计(临床试验设计、调查设计)(7学时)、课堂讨论(13学时)、阶段复习(4学时)、计算机实习(4学时)、考试(3学时)、作业(课余时间,约40学时)。讲座比例1∶1。