同角三角函数基本关系
⒈同角三角函数的基本关系式
倒数关系:
tanα•cotα=1
sinα•cscα=1
cosα•secα=1
商的关系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方关系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)死项新获越型军=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函数关系六角形记忆法
六角形记忆法:(参看图片或参考资料链接)
构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。
(1)倒数关系:对角线上两个函数互为倒数;
(2来自)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。
(主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。
(3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。
两角和差公式
办问纸加军⒉两角和与差的三角函数公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=c360问答osαcosβ-sin它单正调难破αsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tanα+tanβ
tan(α+β)=——————
1-tanα•tanβ
tanα-tanβ
tan(α-β)=——————
1+tanα•tanβ
倍角公式
⒊二倍角的正均斗细农先济独措了七弦、余弦和正切公式(升幂缩燃米纸弱板叶件阻判力角公式)
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
2tanα
tan2α=—————
1-tan^2(α)
半角公式
⒋半角的正弦、余弦和正切公式到与整(降幂扩角公式)
1-cosα
投训笑督必零直持矿于sin^2(α/2)=—————
2
1+cosα
cos^2(α/2)=—————
2
1-cosα
tan^2(江境结划般顺端盟深α/2)=—————
1+白顶cosα
万能公式
⒌万能公式
2tan(α/2)
sinα=——————
1+tan^2(α/2)
1-tan^2(α/2)
cosα=——————
1+tan^2(α/2)
2tan(α/2)
tanα=——————
1-tan^2(α/2)
万能公式推导
大激轻总草增保态龙明丰附推导:
sin2α=2sinα征句cosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,
(因为cos^2(α)+sin^2(α)=1)
再把*分式上下同除cos^2(α),可得sin2α=tan2α/(1+tan^2(α))
然后用α/2代替α即可。
同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。
三倍角公式
⒍三倍角的正弦、余弦和正切公式
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α叶怕境训限头妈缩)-3cosα
3tanα-tan^3(α)
tan3α=—————水画类经讨—
1-3tan^2(α)
三倍角公式推导
附推导:
ta则技官良到n3α=sin3α/cos北对念也两顶鱼来先组3α
=(sin2αcosα+溶交cos2αsinα)/(cos2αcosα-sin2αsinα)
=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)
上下同除以cos^3(α),得:
tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
sin3α=sin(2α+α)=sin2αcosα+cos2αsinα
=2sinαcos^2(α)+(1-2sin^2(α))sinα
=2sinα-2sin^3(α)+sinα-2sin^2(α)
=3sinα-4sin^3(α)
cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
=(2cos^2(α)-1)cosα-2cosαsin^2(α)
=2cos^3(α)-cosα+(2cosα-2cos^3(α))
=4cos^3(α)-3cosα
即
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
三倍角公式联想记忆
记忆方法:谐音、联想
正弦三倍角:3元减4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))
余弦三倍角:4元3角减3元(减完之后还有“余”)
☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。
和差化积公式
⒎三角函数的和差化积公式
α+βα-β
sinα+sinβ=2sin—----•cos—---
22
α+βα-β
sinα-sinβ=2cos—----•sin—----
22
α+βα-β
cosα+cosβ=2cos—-----•cos—-----
22
α+βα-β
cosα-cosβ=-2sin—-----•sin—-----
22
积化和差公式
⒏三角函数的积化和差公式
sinα•cosβ=0.5[sin(α+β)+sin(α-β)]
cosα•sinβ=0.5[sin(α+β)-sin(α-β)]
cosα•cosβ=0.5[cos(α+β)+cos(α-β)]
sinα•sinβ=-0.5[cos(α+β)-cos(α-β)]