上面几个回说针答都是狭义相对论的最基本公式,而非广义相对论。
你来自可以看一下这个网页:http://202.116.65.193/jinpin2005/wuli/web/websource/13.doc
一下使该文件内容,可能有公式贴不上来。
3.1等效原理
第一章1.7节曾经提到,牛顿万有引力可以用引力场来描述.位于的质点感受到的引力或决定于处的引力场,
(3.1)
参数称为引力质量,描写质点对引力场响应的强弱.当质点只受到引力作用而加速运动时,称质点作自由落体运动.例如断了线的升降机,围绕地球转动的月亮等.
根据牛顿第二定律,自由落体的加速度为
360问答(3.2)
参数描写质点被加速的难易程度,称为惯性质量.实验指盐案军哪牛族垂南华出,在同样的引力场中,引力使物体产生的加速度与物体的质量无关.这意北与亮设针微定味着对任意两个物体和员距怎触送又胜有普适的比例常数
(3.3)
不指另妨令它等于1,即
(3.4)
在牛顿力学中,引力质量和惯性质量是两个性质完全不同的参数.他们严格相等在牛顿力学中没有办法解释.
设想一些彼此相距遥远而且和其他物体相距遥远的质点,因而这些质点不受任何力的作用,故他们相对惯性系没有加速度.考虑一个相对作匀加证兰合左若具速运动的参照系.相密对于,上述所有质点具有相等而且平行的加速度.静止在的观测者看来,好像参照系没有加速运动,而质点受到一个均匀引力场作用一样(因为惯性质决征迅量等于引力质量,所有在均匀引力场中自由落体兵红磁粉轴沉质点的加速度一样).且不接较官管产生这种引力的原因,从效果上没有任何理由阻止我们认为存在真实的引力场和是一个和惯性系等价的没有加速度的参照系.参照系和在物理上完全等价的假设是爱因斯坦提出来的,称为等效原理.
等效原理使惯土倍屋格研流垂性系和非惯性系(相对惯性系加速的参照系)完全平等起来,是观念上的极大进步.在这个假设下,无所谓惯性系和非惯性系,参照系都是一样的.质点在不同参照系有不同的行为,只是因为不同参照系引力场的房批级歌混创花及质强度不同.注意,我们这里说述例较识讲非除赵际"引力场的强度不同"而互黑采乱号不说"引力场不同",是希望避免与"引力场是一种客观存在,因此与参照系无关"相矛盾.我们仍然可以认为引力场是一种与参照系无关的客观存在,但它在不同的参照系种表现出不同的强度.在狭义相对论中,我们遇到过类似的例子:一把尺子是客观存在,但在不同惯性系却可以表现出不同的长度.我们将稍后再讨论引力场和叫西了空间几何的关系,以及为什么会出现引力场.
显然不是所有引力场都可以通过简单的加速参照系变换来抵消.例如没有一个加速参照系能看到完全为零的地球引力(习题【3.1】).引力和加速度的等效性是局域的.爱因斯坦守且督别假设,在质点所在的无穷小空间邻域中,引力场被质点的自由落体运动完全抵消掉,固定在该质点上的参照系对该质点附近的无穷小邻域而言是一惯性系,其中引力等于零,狭义相对论成立.
等效原理:
(1)均匀引力场等效于一个加速参照系中的惯性力场;
(2)固定在自由落体上的参照系是一个局域惯性系.
3.2弯曲空间
◆爱因斯坦转盘
在惯性系中制备的一些相同的尺子(每把尺的长度为米),分别沿半径和圆周摆放.
设圆盘相对地面静止时需要用把尺子摆满半径,把尺子摆满圆周.按照欧几里德几何,周长和半径之比为
(3.5)
当圆盘以角速度转动时,圆周处的线速度为.因为转盘是一非惯性参照系,我们现在还不知道非惯性参照系的时空几何学和其他所有自然定律,只能通过地面惯性系的测量来推断转盘上的规律.根据狭义相对论(参见第二章例2-2),在地面惯性系中测得圆周上的尺子长度为
(3.6)
因此转动圆盘上的人需要多一些尺子才能摆满圆周,设需要尺子的数目为().对于转盘上的人,有两种观点可选择:1)仍然采用地面惯性系的长度标准,以不转动的尺子为长度单位;认为转盘上同样的尺子在不同的位置具有不同的长度,而圆盘转动时圆周的长度和静止时一样,即;2)不管尺子作惯性运动抑或非惯性运动,坚持同样的尺子在任何情况下都代表同样的长度(把它作为转盘参照系中的长度单位);因而圆盘转动时圆周的长度和静止时的不一样.对于转盘参照系,按第一种观点,本质相同的尺子在不同位置具有不同的长度,转盘上的人做长度测量时需要考虑另一个固定的参照系.而按第二种观点,尺子的长度与它所处的位置及运动状态无关,长度的测量与单个参照系有关.因为第二种观点避免了一种特殊的有优越性的参照系,所以显得自然一些.
在地面惯性系中测得沿半径摆放在转盘上的尺子长度不变,仍为,因此摆满半径所需的尺子数目仍为.如果转盘上的人采用第二种观点,即认为标准尺的长度是不变的,就会得量出周长和半径的比为
(3.7)
依这种观点,转盘参照系的几何不是欧几里德几何.
再考虑两个相同的时钟,一个放在圆心,一个放在圆周.按照狭义相对论(参见第二章例2-1),当圆盘转动时,地面惯性系的观察者将看到圆周的时钟走得慢一些.离圆心越远,时钟越慢.和前面关于尺子和长度测量的讨论相似,转盘上的观察者可以自然地认为时钟的时间单位(比如一个时钟周期)没有变,仍然代表同样地时间间隔,但转盘上的观察者测量得圆周上的时间较之圆心的变慢了.
■
在转盘上引入非欧几何不是必须的,因为转盘相对一个惯性系转动,一切时间和尺度都可以用惯性系中的时间和尺度,空间几何以惯性系的欧几里德几何为准,即和上两章那样赋予惯性系特殊优越的地位.
但是等效原理告诉我们,圆盘的加速运动等效于引力场.因此引力场同样可以使空间变成非欧几里德空间.存在不能通过参照系变换使之处处为零的引力场,它的效应不能通过参照系变换从全空间消除掉,故对这样的引力场非欧几里德几何是必须的.
为了容易想象弯曲空间,我们假设空间是二维的.图3-2是弯曲空间的一个例子.把曲面镶嵌在高维欧几里德空间,用高维空间(三维空间)的笛卡儿坐标描写曲面是可以的.但高斯提出一种更漂亮的描写方法,即在曲面上直接建立曲线坐标.高斯的方法只使用曲面的内禀性质描写曲面的几何,不需要人为地增加内容,类似于广义相对论只在一个参照系描写空间结构(和物理规律),优越性是明显的.