您的位置 首页 百科知识

求七年级下册数学应用题100道【50道也可以】,带答案的【尽量字数题目少点】,急用,谢谢~

问题补充说明:人教版的

求七年级下册数学应用题100道【50道也可以】,带答案的【尽量字数题目少点】,急用,谢谢~

很不容易的

、王女士看中的商品在甲、乙两商场以相同的价格销售,两商场采用的主言江它促销方式不同,在甲商场一次性购物超过100元,超过刻石妒结事将的部分8折优惠;在乙商场一次性购物超过50元,超过的部分9折优惠,那么她在甲商场购物超过多少元就比在乙商场购物优惠?

解:设王女士在甲商场购物超过X元就比在乙商场购物优惠。

(X-100)×80%+100<50+(X-50)×90%

0.8X-80京盟呢免味科尽友架措+100<50+0测.9X-45

移项﹣0.1X<-织记15

X>150

2、动物销故推字园里,两只狒狒在玩跷跷板,体重33kg的大狒狒把小狒狒翘上了天,吓的小狒狒直叫,这时,一直体重是小狒狒一半的小猴子从会胶黑石差创气树上跳到了小狒狒的身上,只见大狒狒离开了地面,被各超翘段扮了起来,你知道小猴子有多重吗?

解:设小猴侵据房拉精准子缓燃友的体重为Xkg,

33≤X+2X

33≤3X

X≥11

故X≥11kg

3、某小组计划做一批“中国结”,如果每人做5个,那么比计划多了9个;如果每人做4个,那么比计划少了15个,小组成员共有多少名?他们计划做多少个“中国结”?

设小组成员有x名

5x=4x+15+9

5x-4x=15+9

4.某中学组织初一学生进行春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客李助论好犯代车恰好坐满。试问

(1)初一年级人数是多少?原计划租用45座客车多少辆?

解:租用45座客车x辆,租用60座客车(x-1)辆,

45x+15=60(x-1)

解之得:x=545x+15=240(人)

答:初一年级学生人数是240人,

计划租用达曾尽烟几故考45座客车为5辆

5将一批会计报表输入电脑,甲单独做需20h完成,乙所贵概况林鲁输负孔单独做需12h完成.现在先据沿万体按浓由甲单独做4h,剩下的部分由甲,乙合作完成,甲,乙两人合作的时间是多少?

解;设为X万情免让限相乐让社H

1/5+1/20X+1/承侵段再图京们站打装示12X=1

8/60X=4/5

X=6

甲,乙两人合作的时间是6H.

6甲乙丙三个数经主露叶的和是53,以知甲数和乙数的比是4:3,丙数比乙数少2,乙数是(),丙数是()

设甲数为4X.则乙为3X.丙为3X-2.

4X+3X+3X-2=53

10X=53+2

10X=55

X=5.5

3X军第华=16.5

3X-2=16.5-2=14.5

乙为16.5,丙为14.5

7粗蜡烛和细蜡烛的长短一样,粗蜡烛可燃5小时,细蜡烛可燃4小时未望五团切液含聚编费毛,一次停电后同时点燃这两只蜡烛,来电后同时熄灭,结果发现粗蜡烛的长是细蜡烛长的4倍,求停电多长时间?

设停电x小时.粗蜡烛每小时燃烧1/5,细蜡烛是1/4

1-1/5X=4(1-1/4)

1-1/5X=4-X

-1/5+X=4-1

4/5X=3

X=15/4

8.一个三位数,百位上的数字比十位上的数字大1,个位上的数字比十位上的数字的3倍少2,若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.

设十位数为x

则100×(x+1)+10x+3x-2+100*(x+1)+10x+x+1=1171

化简得

424x=1272

所以:x=3

则这个三位数为437

9一年级三个班为希望小学捐赠图书,一扰槐班娟了152册,二班捐书数是三个班级的平均数,三班捐书数是年级捐书总数的40%,三个班共捐了多少图书?

解:设⑵班捐x册

3x=152+x+3xX40%

3x=152+x+6/5x

3x-x-6/5x=152

4/5x=152

x=190…⑵班

190X3=570(本)

10.已知甲乙两人共同完成一件工作需12天,若甲乙单独完成这件工作,则乙所需的天数是甲所需天数的1.5倍。求甲、乙单独完成这件工作各需多少天?

设甲为x天,则乙为1.5x,

1/x+1/1.5x=1/12,

过程,两边同乘x,得1+1/1.5=x/12,得x=20

11.一项工程,若甲队承包刚好在规定日期内完成,乙队承包则要超过3天完成。结果甲、乙两队合作2天,剩下部分由乙队单独做,刚好在规定日期完成。求规定日期是多少天?

设日期为x天

甲工作效率为1/x,乙为1/(x+3),

则方程为,(1/x+1/(x+3))*2+(x-2)/(x+3)=1,

过程,2/x+2/(x+3)+(x-2)/(x+3)=1

x/(x+3)=(x-2)/x

x=6

12某车间每个工人能生产12个螺栓或18个螺母,每个螺栓要有两个螺母配套,现有共人28人,怎样分配工人数,才能使每天产量刚好配套?

解:设分配x人去生产螺栓,则(28-x)人生产螺母

因为每个螺栓要有两个螺母配套,所以螺栓数的二倍等于螺母数

2×12x=18(28-x)

解得x=12所以28-x=28-12=16

即应分配12人生产螺栓,16人生产螺母

13甲、乙两列火车相向而行,甲列车每小时行驶60千米,车长150米;乙列车每小时行驶75千米,车长120米。两车从车头相遇到车尾相离需多少时间?

可以假定甲列车不动,则乙列车相对甲列车的速度就为60+75=135千米/小时;两车从车头相遇到车尾相离一共走了150+120=270米=0.27千米

则所求时间t=0.27/135=0.002小时

14现对某商品降价10%促销,为了使销售金额不变,销售量要比按原价销售时增加百分之几?

设:增加x%

90%*(1+x%)=1

解得:x=1/9

所以,销售量要比按原价销售时增加11.11%

15甲.乙两种商品的原单价和为100元,因市场变化,甲商品降10%,乙商品提价5%调价后两商品的单价和比原单价和提高2%,甲.乙两商品原单价各是多少/

设甲商品原单价为X元,那么乙为100-X

(1-10%)X+(1+5%)(100-X)=100(1+2%)

结果X=20元甲

100-20=80乙

16.甲车间人数比乙车间人数的4/5少30人,如果从乙车间调10人到甲车间去,那么甲车间的人数就是乙车间的3/4。求原来每个车间的人数。

设乙车间有X人,根据总人数相等,列出方程:

X+4/5X-30=X-10+3/4(X-10)

X=250

所以甲车间人数为250*4/5-30=170.

说明:

等式左边是调前的,等式右边是调后的

17甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?(列方程)

设A,B两地路程为X

x-(x/4)=x-72

x=288

答:A,B两地路程为288

18.甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒,车的速度不变,求甲、乙两车的速度。

二车的速度和是:[180*2]/12=30米/秒

设甲速度是X,则乙的速度是30-X

180*2=60[X-(30-X)]

X=18

即甲车的速度是18米/秒,乙车的速度是:12米/秒

19.两根同样长的蜡烛,粗的可燃3小时,细的可燃8/3小时,停电时,同时点燃两根蜡烛,来电时同时吹灭,粗的是细的长度的2倍,求停电的时间.

设停电的时间是X

设总长是单位1,那么粗的一时间燃1/3,细的是3/8

1-X/3=2[1-3X/8]

X=2.4

即停电了2.4小时。

20某工厂今年共生产某种机器2300台,与去年相比,上半年增加25%,下半年减少15%,问今年下半年生产了多少台?

解:设下半年X生产台,则上半年生产[2300-X]台。

根据题意得:【1-15%】X+【1+25%】【2300-X】=2300

解之得:931

答:下半年生产931台。

21甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?]

设A,B两地路程为X

x-(x/4)=x-72

x=288

答:A,B两地路程为288m

1-X/3=2[1-3X/8]

X=2.4

即停电了2.4小时。

20.某工厂今年共生产某种机器2300台,与去年相比,上半年增加25%,下半年减少15%,问今年下半年生产了多少台?

解:设下半年X生产台,则上半年生产[2300-X]台。

21小明与小聪两人同时在同一商店买粮食,小明每次购买100千克,小聪每次用去100元。但这两次购买粮食的单价不同。若规定:两次购买粮食的平均单价谁低,谁的购梁方式合算。则你能判断小明与小聪谁的购梁方式更合算吗?

一:

(1)甲乙两队合作效率1/6,乙丙合作效率1/10,甲丙合作效率(2/3)÷5=2/15

所以甲乙丙三队合作效率为(1/6+1/10+2/15)÷2=1/5

甲队单独完成全部工程需要1÷(1/5-1/10)=10天

乙队单独完成全部工程需要1÷(1/5-2/15)=15天

丙队单独完成全部工程需要1÷(1/5-1/6)=30天

(2)甲乙日工资和8700/6=1450元,乙丙日工资和9500/10=950元,甲丙日工资和5500/5=1100元

所以甲乙丙日工资和(1450+950+1100)÷2=1750元

所以甲日工资1750-950=800元,乙日工资1750-1100=650元,丙日工资1750-1450=300元

所以甲队单独完成全部工程需要10天,费用800×10=8000元

乙队单独完成全部工程需要15天,费用650×15=9750元

丙队单独完成全部工程需要30天,费用300×30=9000元

所以,若工期要求不超过15天完成全部工程,甲队单独完成此工程花钱最少。

或⑴单独做,三个队需要的天数。

甲:2÷(1/6+2/3÷5-1/10)=10天,

乙:1÷(1/6-1/10)=15天,

丙:1÷(1/10-1/15)=30天。

⑵首先丙队不能在15天内完成,因此排除丙队。

每两队每天工资和:

甲丙8700÷6=1450元;乙丙9500÷10=950元;甲丙5500÷5=1100元

甲乙单独每天工资:

甲队:(1100+1450-950)÷2=800元;乙队:1450-800=650元

因为800×10<650×15,所以找甲队花钱最少。

二:解:设招聘甲种工种的工人是x人,乙种工种人数nx(n=2),所招聘工人共需付月工资y元

那么y=600x+1000nx

因为随着乙种工种人数增加,所以当乙种工种人数是甲种工种人数的2倍(n=2)时,每月所付的工资最少。所以甲种工种招聘50人,乙种工种招聘100人可使每月所付的工资最少,最少工资是130000元。

三:1008>100×9=900元

1314÷9=112

解:设甲旅游团有x人,乙旅游团有112-x人。

11x+13(112-x)=1314

11x+1456-13x=1314

-2x+1456=1314

-2x=-142

x=71

112-x=112-71=41(人)

答:甲旅游团有71人,乙旅游团有41人。

四:

设每分钟增加旅客为x

(a+30x)/30=(a+10x)/20

得:x=a/30

每个检票口每分钟检票人数为:a/15

需要得检票口个数为:[a+5*(a/15)]/[(a/15)*5]=4个至于追加悬赏分与否随你吧

22某单位新盖了一座楼房,要从相距132米处的自来水主管道铺设水管,现有8米长与5米长的两种规格的水管可供选用。请你设计方案,如何选取这两种水管,才能恰好从主管道铺设到这座楼房?这样的方案有几种?若8米长的水管每根50元,5米长的水管每根35元,选哪种方案最省钱

解:设8米的水管X根,5米的水管Y根

8x+5y=132

解得:

x=4y=20

x=9y=12

x=14y=4

由题意得,因为要使最省钱,所以当8米长的水管14根,5米长的水管4根时最省钱。

23已知方程组ax+by=c

a'x+b'y=c’

他的解为x=3

y=4

求方程组3ax+2by=5c的解

3a'+2b'y=5c'

3ax+2by=5c

3a'+2b'y=5c'两个式子都除以5

得3/5ax+2/5by=c

3/5a'x+2/5b'y=c'

把x=3

y=4分别带入原方程组

3/5xa+2/5yb=c

3a+4b=c

3/5ya'+2/5yb'=c'

3a'+4b'=c’

因为结果相同,字母相同,所以系数相同。

3/5x=3x=52/5y=4y=10

24为了拉动内需,山东省启动了“家电下乡”活动。某家电公司销售给农户的Ⅰ型冰箱和Ⅱ型冰箱在启动活动前一个月共售出960台,启动活动后的第一个月销售给农户的Ⅰ型冰箱和Ⅱ型冰箱的数量分别比启动活动前一个月增长30%、25%,这两种型号的冰箱共售出1228台。

(1)在启动活动前一个月,销售给农户的Ⅰ型冰箱和Ⅱ型冰箱分别为多少台?

(2)若Ⅰ型冰箱每台价格是2298元,Ⅱ型冰箱每台价格是1999元。根据“家电下乡”的有关政策,政府按每台冰箱价格的13%给购买冰箱的农户补贴,问启动活动后的第一个月销售给农户的1228台Ⅰ型和Ⅱ型冰箱,政府共补贴了多少元?(结果保留2个有效数字)

<1>,解;设启动活动前一个月售出第一种冰箱x台那么第2种型号的售出了<960—x>台。

然后列式;x乘以<1+30%>+<960-X>乘以<1+25%>=1228

x=560

答;在启动活动前一个月,销售给农户的Ⅰ型冰箱为560台,销售给农户的Ⅱ型冰箱为960-560=400台。

<2>,根据题意,首先算出启动活动后的第一个月的两种冰箱的销售量。

启动活动后的第一个月Ⅰ型冰箱的销售量:560x(1+30%)=728台

Ⅰ型冰箱农户补贴为:728x<2298x13%>=217482.72元

启动活动后的第一个月Ⅱ型冰箱的销售量:400X<1+25%>=500台

Ⅱ型冰箱农户补贴为:500x<1999X13%>=129935元

政府共补贴了多少元:2174852.72+129935=2304787.72保留两个有效数字为2300000

25为满足市民对优质教育的需求,某中学决定改变办学条件,计划拆除一部分旧校舍、建造新校舍。拆除旧校舍每平米需80元,建造新校舍每平米需700元。计划在年内拆除旧校舍共7200平方米,在实施中为扩大绿化面积,新建校舍只完成了80%,而拆除校舍超过10%,结果恰好完成了原计划的拆、建的总面积。1.求原来计划拆建面积个多少平方米?2.若绿化1平方米需200元,那么实际完成拆、建工程中结余资金能用来绿化大约多少平方米?

解:设拆x平方米,新建y平方米,则有等式:

x+y=7200.............(1)

1.1x+0.8y=7200.......(2)

(2)-(1)得0.1x-0.2y=0,故x=2y,代入(1)式得3y=7200

∴y=2400m²,x=7200-2400=4800m²

即原计划拆4800m²,新建2400m².

原计划资金4800×80+2400×700=2064000元=206.4万元

实际用资金1.1×4800×80+0.8×2400×700=1766400元=176.64万元

节约2064000-1766400=297600元

故可绿化面积297600/200=1488m²

26某中学建一栋4层的教学大楼,每层楼有8间教室,进这栋大楼共有四道门,其中两道正门大小相同,两道侧门也大小相同。安全检查中,对4道门进行了测试:当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,4分钟内可以通过800名学生。1.求平均每分钟一道正门和一道侧门各可以通过多少名学生?2.检查中发现,紧急情况时因学生拥挤,出门的效率降低20%。安全检查规定,在紧急情况下全大楼学生应在5分钟内通过这4道门。假设这栋教学大楼每间教室最多有45名学生,问:建造这4道门是否符合规定?请说明理由。

设平均每分钟一道正门和一道侧门各可以通过X、Y名学生

则(X+2Y)*2=560

(X+Y)*4=800

得到小门Y=80,大门X=120

第二问

全楼总人数是4*8*45=1440

而四道门5分内能通过的人数为=(2X+2Y)*5*(1-20%)=1600人

所以是合格的

27王女士看中的商品在甲、乙两商场以相同的价格销售,两商场采用的促销方式不同,在甲商场一次性购物超过100元,超过的部分8折优惠;在乙商场一次性购物超过50元,超过的部分9折优惠,那么她在甲商场购物超过多少元就比在乙商场购物优惠?

解:设王女士在甲商场购物超过X元就比在乙商场购物优惠。

(X-100)×80%+100<50+(X-50)×90%

0.8X-80+100<50+0.9X-45

移项﹣0.1X<-15

X>150

28动物园里,两只狒狒在玩跷跷板,体重33kg的大狒狒把小狒狒翘上了天,吓的小狒狒直叫,这时,一直体重是小狒狒一半的小猴子从树上跳到了小狒狒的身上,只见大狒狒离开了地面,被翘了起来,你知道小猴子有多重吗?

解:设小猴子的体重为Xkg,

33≤X+2X

33≤3X

X≥11

故X≥11kg

29.一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?

分析设工程总量为单位1,等量关系为:甲完成工作量+乙完成工作量=工作总量。

  解:设乙还需x天完成全部工程,设工作总量为单位1,由题意得,(115+112)×3+x12=1,  解这个方程,15+14+x12=1     

12+15+5x=605x=33   ∴x=335=635  答:略.

30.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

  (1)慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇?

  (2)两车同时开出,相背而行多少小时后两车相距600公里?

  (3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?

  (4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?

  (5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?

  此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。故可结合图形分析。

(1)分析:相遇问题,画图表示为:

等量关系是:慢车走的路程+快车走的路程=480公里。  

解:设快车开出x小时后两车相遇,由题意得,140x+90(x+1)=480  

解这个方程,230x=390        ∴x=11623答:略.

分析:相背而行,画图表示为:  

等量关系是:两车所走的路程和+480公里=600公里。

  解:设x小时后两车相距600公里,由题意得,(140+90)x+480=600解这个方程,230x=120∴x=1223 

  (3)分析:等量关系为:快车所走路程-慢车所走路程+480公里=600公里。

  解:设x小时后两车相距600公里,由题意得,(140-90)x+480=600  50x=120 ∴x=2.4  答:略.

分析:追及问题,画图表示为:

等量关系为:快车的路程=慢车走的路程+480公里。  

解:设x小时后快车追上慢车。由题意得,140x=90x+480 解这个方程,50x=480 ∴x=9.6答:略.

分析:追及问题,等量关系为:快车的路程=慢车走的路程+480公里。

解:设快车开出x小时后追上慢车。由题意得,140x=90(x+1)+480 50x=570 解得,x=11.4  

31一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?

分析:探究题目中隐含的条件是关键,可直接设出成本为X元

进价 折扣率 标价 优惠价 利润

x元 8折 (1+40%)x元 80%(1+40%)x 15元

等量关系:(利润=折扣后价格—进价)折扣后价格-进价=15

解:设进价为X元,80%X(1+40%)—X=15,X=125答:略.

32.某同学把250元钱存入银行,整存整取,存期为半年。半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税)

分析:等量关系:本息和=本金×(1+利率)解:设半年期的实际利率为x,250(1+x)=252.7,x=0.0108

所以年利率为0.0108×2=0.0216

33、甲、乙两人分别从相距30千米的A、B两地同时相向而行,经过3小时后相距3千米,再经过2小时,甲到B地所剩路程是乙到A地所剩路程的2倍,求甲、乙两人的速度.

解析:设甲、乙的速度分别为x千米/时和y千米/时.第一种情况:甲、乙两人相遇前还相距3千米.根据题意,得

第二种情况:甲、乙两人是相遇后相距3千米.根据题意,得

答:甲、乙的速度分别为4千米/时和5千米/时;或甲、乙的速度分别为千米/时和千米/时.

裤子才能配套,用360米生产上衣,240米生产裤子才能配套,共能生产240套。4.某商场按定价销售某种电器时,每台可获利48元,按定价的九折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等.求该电器每台的进价、定价各是多少元?4.解:设该电器每台的进价为x元,定价为y元.答:该电器每台的进价是162元,定价是210元.解析:打九折是按定价的90%销售,利润=售价-进价.5.解:设用xm3木料做桌面,ym3木料做桌腿.(2)6×50=300(张).答:用6m3木料做桌面,4m3木料做桌腿恰好能配成方桌,能配成300张方桌.5.一张方桌由1个桌面,4条桌腿组成,如果1m3木料可以做方桌的桌面50个或做桌腿300条,现有10m3木料,那么用多少立方米的木料做桌面,多少立方米的木料做桌腿,做出的桌面与桌腿,恰好能配成方桌?能配成多少张方桌.5.:设用xm3木料做桌面,ym3木料做桌腿.2)6×50=300(张).答:用6m3木料做桌面,4m3木料做桌腿恰好能配成方桌,能配成300张方桌.6.甲、乙二人在上午8时,自A、B两地同时相向而行,上午10时相距36km,二人继续前行,到12时又相距36km,已知甲每小时比乙多走2km,求A,B两地的距离.设A、B两地相距xkm,乙每小时走ykm,则甲每小时走(y+2)km7.某中学组织学生春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满,已知45座客车每日每辆租金为220元,60座客车每日每辆租金为300元问:1)春游学生共多少人?原计划租45座客车多少辆?(2)若租用同一种车,要使每位同学都有座位,怎样租车更合算?

上一篇 2023年最流行的短发发型
下一篇 10000,00和10000.00分草背丝阶你别是多少钱
扫一扫,手机访问

扫一扫,手机浏览