您的位置 首页 百科知识

麦比乌斯圈是什么

公元1858年,德国数学家莫比乌斯(Mobius,1790~1868)和约翰·李斯丁发现:把一根纸条耐检山够思联工己扭转180°后,两头再粘接起来做成的纸带圈,具有魔术般的性质。普通纸带具有两个面(即双侧曲面),一个正面,一个反面,两个面可以涂成不同的颜色;

而这样的纸带只有一个面(即单侧曲面),一只小虫可以爬遍整个曲面而不必跨过它的边缘。这种纸带被称为“莫比乌斯带”(也就是说,它的曲面从两个减少到只有一个)。

麦比乌斯圈是什么

扩展资料:

莫比乌斯带是一种拓展图形,见家岁状万他极它们在图形被弯曲、拉大呢章酒、缩小或任意的变形下保持不变,只要在变形过程中不使原来不同的点重合为同一个点,又不产生新点。换句话说,这种变换的条件是:在至苦雨文英苏至切原来图形的点与变换了图形的点之间存在着一一对应的关系,并且邻近的点还是邻近的点。

这样的变换叫做拓扑变换。拓扑有一个形象说法——橡皮几何学。因为如果图形都是机阳用橡皮做成的,就能把许多图形进介随车说强缩如级行拓扑变换。例如一个橡皮圈能变形成一个圆圈或一沿病搞讲个方圈。但是一个橡坏培待序仍概酒铁滑皮腊辩圈不能由拓扑变换轮洞缺成为一个阿拉伯数字8。因为不把颤备圈上的友础扩核以祖端故今场抓两个点重合在一起,圈就不会变成8,“莫比乌斯带”正好差包劳丝刻军后段满足了上述要求。

参考资料来源:百度百科-麦比乌斯圈

上一篇 三星刷机教程
下一篇 赞美老师的来自诗句大全
扫一扫,手机访问

扫一扫,手机浏览